The Titanium Trichloride-3Tetrahydrofuran Magnesium System. A New Reagent for Easy Reduction and Dehydrohalogenation of Organic Halides

By STANISŁAW TYRLIK* and IWONA WOŁOCHOWICZ

(Laboratory of Homogenous Catalysis, Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Kasprzaka 44, Poland)

Summary TiCl₃:3THF is reduced by metallic magnesium in tetrahydrofuran (THF) under argon or nitrogen to a product which reductively removes halogen atoms from both sp^3 and sp^2 hybridised organic halides.

THE TiCl₃·3THF-Mg in THF system¹ reacts with molecular nitrogen to give TiNMg₂Cl₂·THF, hydrolysis of which gives ammonia. Under nitrogen, this system reacts with acetone to give PrⁱOH, PrⁱNH₂, Me₂C=CMe₂, and Me₂C(OH)C(OH)-Me₂.² When prepared under argon, the system reacts with carbonyl compounds giving olefins,³ and it also reacts with CO and CO₂.⁴

We have now found that this system reduces organic halides of sp^3 or sp^3 hybridisation (see Table).

The $TiCl_3$ ·3THF-Mg system is one of the most useful of the reagents proposed recently⁵ for reducing halogen derivatives, reducing unreactive bromides and iodides

almost quantitatively at room temperature. The reactivity order (I > Br > Cl > F) is similar to that for LiAlH₄ and unlike that for $S_N 2$ reactions (F >> Cl ~ Br > I), indicating that the reaction is not a simple nucleophilic attack on carbon. Electron-releasing substituents such as *p*-methyl and *p*-methoxy result in a decrease of the yield. The reaction with aliphatic alicyclic halides gives alkanes accompanied by alkenes, the relative amount of the elimination products increasing in the order Cl < Br < I.

The reaction takes place under mild conditions, at room temperature, and under normal pressure. Low-boiling products can be isolated by distillation. Hydrolysis of the product is not necessary.

The compound which reduces the halogenoderivatives is formed under nitrogen and argon atmospheres but in the latter case the efficiency of the system is slightly higher. The yield is not improved by replacing nitrogen or argon

Conditions						
Substrate		tmosphere	t_1/h	t_2/h	Product	Yield (%)
C ₆ H ₅ F	{	N ₂ N ₂ N ₂ /H ₂ Ar	24 24 24/120 48	24 24 ^b 24 24	C ₆ H ₆	$2-13 \\ 8-28 \\ 1-4 \\ 5-20$
C ₆ H ₅ Cl	{	Ar Ar H ₂	1 48 24	24 24 24	C ₆ H ₆	50-55 62-81 20
C_6H_5Br C_6H_5I	•••	Ar Ar	48 48	$rac{24}{24}$	C ₆ H ₆ C ₆ H ₆	89 100
1-Fluoronaphthalene		Ar	24	24 ^b	Naphthalene	89
1-Chloronaphthalene		Ar	48	24	Naphthalene	34
Cyclohexyl chloride		Ar	48	48	Cyclohexane Cyclohexene	79
Cyclohexyl brom	ide	Ar	48	48	Cyclohexane Cyclohexane Cyclohexene	$15-18 \\ 79 \\ 21$
Cyclohexyl iodide	e	Ar	48	48	Cyclohexane Cyclohexene	61-66 33-39
n-Pentyl bromide	÷	N_2	24	24	n-Pentane Pent-1-ene	79 12
MeI 4-Chloroanisole PhCH ₂ Cl	•••	N2 Ar Ar	24 48 48	24 24 24	CH ₄ Anisole PhMe	$55-60 \\ 20-30$
p-Chlorotoluene	••	Ar	48	$\frac{24}{24}$	PhMe	$96-100 \\ 64-70$
C_6F_6	••	Ar	24	24	C ₆ F ₅ H	27 - 30

TABLE. Reduction of halides by TiCl₃·3THF-Mg³

^a Standard procedure: TiCl-3THF (0.01 mol) and Mg (0.02 mol) in THF (ca. 40 ml) were allowed to react under N₂ or Ar for time The organic halide (0.01 mol) was then added, and after time t_2 the mixture was evaporated to dryness and the distillate was collected and analysed by g.l.c. For the naphthalene derivatives, after time t_2 the mixture was hydrolysed with l_N -HCl and extracted with ether before g.l.c. analysis. ^b Heated under reflux for time t_2 .

with hydrogen. Yamamoto¹ reported that in the presence of excess of Mg (Ti: Mg 1:10) the TiCl₃·THF-Mg system reacts with H_2 giving MgH₂. Our results indicate that MgH₂ is not the reducing agent. The origin of the hydrogen replacing halogen has not been elucidated. One source of

reactive hydrogen could be the THF molecule, following its decomposition in the initial stages of the reaction.

We thank Professor M. Kocór for advice and discussions.

(Received, 2nd July 1975; Com. 753.)

¹ A. Yamamoto, M. Ookawa, and S. Ikeda, Chem. Comm., 1969, 841; A. Yamamoto, S. Go, M. Ookawa, M. Takahashi, S. Ikeda, and T. Keii, Bull. Chem. Soc. Japan, 1972, 45, 3110.
^a S. Tyrlik, I. Wołochowicz, and H. Stępowska, J. Organometallic Chem., 1973, 93, 353.
^a S. Tyrlik and I. Wołochowicz, Bull. Soc. chim. France, 1973, 6, 2147.

⁸ S. Tyrlik and I. Wołochowicz, Bull. Soc. chim. France, 1973, 6, 2147.
⁴ B. Jeżowska-Trzebiatowska and P. Sobota, J. Organometallic Chem., 1973, 61, 43; 1974, 76, 43.
⁵ S. Masamune, P. A. Rossy, and G. S. Bates, J. Amer. Chem. Soc., 1973, 95, 6452; S. Masamune, G. S. Bates, and P. E. Georghiou, *ibid.*, 1974, 96, 3686; C. A. Brown and S. Krishnamurthy, *ibid.*, 1973, 95, 1669; E. J. Corey and G. H. Posner, *ibid.*, 1968, 90, 5615; 1967, 89, 3911; G. M. Whitesides, J. San Filippo, E. R. Stredomsky, and Ch. P. Casey, *ibid.*, 1960, 91, 6452; J. E. McMurry, Accounts Chem. Res., 1974, 7, 281; H. C. Brown and S. Krishnamurthy, J. Org. Chem., 1969, 34, 3918; L. A. Rothman and E. J. Becker, *ibid.*, 1960, 25, 2203; D. H. Lorenz, P. Shapiro, A. Stern, and E. J. Becker, *ibid.*, 1974, 763.